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ABSTRACT 

The general properties of the  gamma  distribution, which has several applications  in meteorology, are discussed. 
A short review of the general  properties of good statistical  estimators is given. This is  applied to  the gamma  distribu- 
tion  to show that  the maximum likelihood estimators  are jointly sufficient. A new, simple approximation of the 
likelihood solutions  is given, and  the efficiency of the  fitting procedure  is computed. 

1. INTRODUCTION 

In 1947, the  writer [l] developed approximate  solutions 
of the maximum likelihood (M.L.) equations  for  the incom- 
plete gamma  distribution commonly called the  gamma 
distribution. The purpose of this  note is to give the 
development of the  estimates which have  since been  widely 
employed. The  first application of the  methods was tlo 
rainfall data [2]; later  it was found that  the  gamma  distri- 
bution has wide application  in meteorology to problems 
where the climatological variable has a physical lower 
bound of zero but no  nonstatistical  upper  bound. 

The  gamma  distribution is a special case of the Pearson 
Type I11 distribution where the locus parameter is zero. 
Fisher [3] first  gave the M. L. equations for this  distribu- 
tion; however, as is often  the case with M. L. estimation 
the equations are  not conveniently  solved.  Our  approxi- 
mations make  the  estimation of the  distribution  param- 
eters hardly  more difficult than  the  estimation of the  mean 
and standard  deviation of the  normal  distribution. 

2. THE GAMMA DISTRIBUTION AND PROPERTIES 

The  gamma  distribution  is a 2-parameter  frequency 
distribution given by  the  equation 

4 6 8 4 2 3 - 5 6 1  

f(z) zY”,q-z/B * 
1 P>O* 

Byr(7) ’ r>o (1) 

Here x is the  random  variable, p scales z and is therefore 
the scale parameter, y is the  shape  parameter, r is the 
usual  gamma  function, and f(z)=O for x<O. It will be 
noted that  the  distribution  has a zero lower  bound and is 
unlimited on the  right. It is positively skewed, the 
amount of skew depending  inversely  on the  shape  factor 7. 
The mode of the  distribution is a t  /3 (7-1) if -y>l and 
a t  zero if 0<7_< 1. In the  latter case, the distribution 
is J-shaped. For y = l  the  distribution is exponential 
with  ordinate l /p a t  x = O ;  for r<l the  ordinate at x=O 
is infinite. The  gamma  distribution is closely related  to 
the chi square  distribution,  for x2/2 is a gamma  variate 
with y = x n  and 8=1. 

The  moments  about zero of the  gamma  distribution are 
given by  the  relation 

P:=PrY(Y+l) . . . (T+T--l), (2) 

from which it follows immediately that  the mean is 

P: = PT. (3) 
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From  the moment  relationships the second, third,  and 
fourth moments about  the mean are easily found  to be 

p3=2 $7 (5) 

p4=3P4r(r+2). (6) 

Since the skewness statistic is d&=pCL3/cr3, we have 
from (4) and (5) that 

(7) 

Hence, the skewness  goes to zero with  increasing y showing 
that  the gamma distribution becomes symmetrical  for 
large y ;  in fact, it may  be shown that  the distribution 
approaches normality slowly as y increases. For y>100 
it is approximately  normal  for climatological applications. 

The main interest  in  applications to climatological anal- 
ysis is not  in  equation (I) but  in  its  integral which gives 
probability.  This  cannot  be  found except as an expansion 
in series or continued  fractions.  The  integral  from 0 to 
any value of the  variate  has been tabulated  by Pearson 
[4], and  this of course gives the  probability that  any  value 
of the  variate is less than  the  tabulated value. 

Pearson used the  moments for  fitting  the  Type I11 fre- 
quency  curve, so the  arguments of his table  are u and p .  
The  variate u is scaled in  terms of the  standard  deviation 
instead of p. Hence, u=x/(p&) or xl/3=u?l;; in  our  nota- 
tion. Also, his p=y- l. To use Pearson's  table we find 
y=p+l and  multiply  the u value by &. For  certain 
purposes it may  be more  convenient to convert  the x's to 
u values. 

3. STATISTICAL  ESTIMATORS 

The main statistical problem in  the application of the 
gamma distribution  to climatological data is the estima- 
tion of the  parameters p and y from  a  sample  record.  The 
estimation  problem is one of three basic problems in 
statistical  analysis,  and it will serve  our  present  purpose  to 
discuss the general problem briefly. 

It has long been known that there  are  many ways to 
estimate the  parameters  in  a  statistical  equation  from  a 
sample of data.  Two of the more common methods  are 
least  squares and  moments. It was found by Fisher [3] 
that  the various  methods of estimation  do  not give equally 
good results  in  the sense that some estimat'es  or  statistics 
are more variable than  others. Clearly, the  best  estimates 
are those which have  the  smallest  variability.  For exam- 
ple, in  samples of 10 from  a  normal  population  the  mean or 
expected value could be  estimated  by averaging the smallest 
aad  the largest  value,  or it could be estimated by averaging 
all the observations.  Obviously, the  latter  statistic using 
all the observations  should  be better  than  that using only 

'the  variability  from sample to sample  for  sample size 10 
as measured by  the  variance is twice as large  when  only  the 

. .  two of the observations. I n  fact, it has been shown that 
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extreme  observations are averaged. The median, which 
is also an  estimate of mean,  has a variance about one-third 
greater  than  the mean  for  sample size 10. From this it 
may be inferred that if we use the  mean  range as an esti- 
mate, we in effect discard  half of our  data; if we use the 
median we discard  one-third of it. In climatology, where 
data  are scarce, the use of inefficient  estimators is clearly 
to  be  avoided. 

Fisher [3] made  a  remarkable  contribution to statistical 
analysis by developing a  method of estimation originally 
due to Gauss which he called the  method of maximum 
likelihood (M. L.). This  method consists of maximizing 
what he calls the likelihood or  the  product of the frequency 
functions of a  sample. If f(z;&y) is any frequency func- 
tion,  the likelihood is defined to  be 

where z1 is the i th  value  in  a  sample of n. To maximize  this 
it is simplest to  take  logarithms before differentiating and 
sett>ing  to  zwo.  This gives 

Differentiating  partially  with  respect to B and y gives the 
M. L. differential  equations 

Solving these gives the M. L. estimates commonly written 
as  and 9. The M. L. estimates  have  certain  remarkable 
advantages  not always possessed by  other  estimates which 
will  now  be discussed. 

In  order to assess the  quality of estimators  in general, 
Fisher defined three desirable properties of statistics; viz., 
consistency, efficiency, and sufficiency. These  may be 
defined as follows: 

1. 'If an  estimator  or  statistic is consistent it converges 
in  probability  to its population or parameter value. This 
may be expressed in symbols by 

T, is an  estimate of the  parameter 0 based on sample size 
n, E and 11 are  arbitrarily small  quantities,  and N is any 
integer. This means that Tn=O when T,  is calculated 
from  the whole population. 

2. A consistent  estimate TI is said  to be more efficient 
than  another consistent  estimate T2 if v(TJ<v(Tz); i. e., 
if the variance of TI is less than  the variance T2. An esti- 
mate is said to be efficient if it has  the smallest  variance 
of a class of consistent  estimates. The efficiency of an 
estimate is defined as v( @/v( T )  where ?is M. L. estimate. 
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3. An estimate T is said  to  be sufficient if it.exhausts 
all possible information  on 0 from  a  sample of any size. 
If Tl and T2 are  two  different  estimates of 0 not func- 
tionally related,  an  estimate TI of 0 is sufficient if the  joint 
distribution of TI and T2 has  the  form 

.f=fl ( TI, e1.f~ \ Tz I TI) (12) 

where fl is the frequency  distribution of Tl and f2 is the 
distribution of T2 given a  sample  value of Tl. Once Tl 
is known the  probability of any range of values for T2 is 
the same  for  all 0; hence, T2 cannot give any information 
on 0 which  is not  already  available  from Tl.  Sufficiency 
is the  most  desirable  property of an  estimate,  and  such 
estimates are  said to be optimum. 

The  superiority of M. L. estimates was demonstrated 
by Fisher and  others when they proved that M. L. esti- 
mates are  consistent and efficient and if a sufficient esti- 
mate exists, it will be given by  the M. 1,. method. 

4. MAXIMUM LIKELIHOOD ESTIMATES 

Applying (9) t,o the gamma  distribution  equation ( l j  
gives 

L=-ny log p-nlogr(y)+(y-l)Z log ~ " - 2 x  (13) 

where the  summation is over the n sample  values.  Dif- 
ferentiating as indicated  in  equations (10) we find the 
M. L. equations 

1 
.R 

- A  x/p-+=o (14) 

A b  log p+-; log r (+) "-2 log Z=O. 1 
n (15) 

Since : log I' (+) is the digamma  funct,ion, $(+)! we may 

write (15) in  the simplified form 

b 
bY 

', 

log P+#(+) "Z log 5=0. 1 
n ( 16) 

Taking logarithms of (14) and  substitut,ing for log ji in 
(16) gives 

log +-I)(+)= log s"-2 log X .  (1 7) 
1 
n 

This equation  is  implicit  in + but  may be solved with 
some difficulty using the  Davis 151 tables of the 4-func- 
tions. Masuyama  and  Kuroiwa [6] prepared  tables of 
log +-$(+) from  tables of logarithms  and tables of the 
digamma functions. 

We developed the application of the gamma  distribu- 
tion to  precipitation  before  Masuyama and Kuroiwa's 
tables  were available  although, of course, we had also 
followed the equivalent  procedure of using the  Davis 
tables. To simplify the technique of fitting we developed 
an approximation to log +-#(+) as follows: Norlund [7] 
shows that 

is an  asymptotic expansion  in  which B, are  the Bernoulli 
numbers, B1= 1/6, B2= 1/30, etc.,  and R, is the remainder 
after m terms.  For y> 1 we may  write  the inequality 

For only m = l  and y = l ,  lRnl <0.00833 which  is  less 
than 1.5 percent of the  table value # (1) = -0.57722 given 
by  Davis [5 ] .  The approximation, of course, increases 
in  accuracy  with y. At  y=2  it is within 0.1 percent of 
table  value. We are  not, however,  interested  in approxi- 
mating $ but in  approximating y. 

From (18) for m= 1 we find 

*(r) =log 7- 1/(2Y) - 1/(12Y2). (20) 

Substituting  in (17) we find 

12 log%" 2 log 5 +"6+"=0. 
( n  l )  

Simplifying by  letting  A=log Z-- 2 log x we have 1 
n 

which is  a quadratic  equation whose only  pertinent  root is 

This together  with  equation (14) gives the M. L. estimates 
for the gamma  distribution. It is only necessary to sum 
the  natural logarithms of x and  take  the  natural logarithm 
of the mean of z to provide the basic data for  equations 
(14) and (21). Common  logarithms  may, of course, also 
be used by multiplying by  the proper conversion factor. 

The error  in + resulting  from  using  only one term of 
equation (18) is not readily expressed in mathematical 
form;  hence, we have  computed the following table for 
correcting the  estimate  obtained  from equation (22). 

0.-2 0. 034 0:s 0. 012 1 . 4  0. 006 2. 2 0. 003 
0. 3 . 029 0. 9 . 011 1. 5 .005 2. 3 .002 
0.4 . 025 1. 0 . 009 1 .6  .005 3.1 .002 
0. 5 . 021 1. 1 . 008 1. 7 .004 3 . 2  . 001 
0.6 .017 1 . 2  .007 1. 8 .004 5 . 5  . 001 
0. 7 .014 1. 3 .006 1 . 9  .003 5 . 6  . 000 

The value of A+ is to be subtracted from the value of + 
obtained  from  equation (22). 

5. SUFFICIENCY OF THE ESTIMATES 

Koopman [8] has given the necessary and  sufficient 
conditions for a  set of estimators  to be  jointly  sufficient 
in the form 



120 MONTHLY WEATHER REVIEW APRIL 1968 

we have simply 
.p2=*’(r) 

Here A, and B are  functions of the  parameters of the 
distribution (8 and y in  this case) and X ,  and Y are  func- 
tions of x. Taking  logarithms of (1) we have 

logf= -alp+ +- 1) log $-log r(y)-y log 8. (24) 

This  is of the  form (23) where Al=-l//3, A2=y-1, 
Xl=x, X2=10g x, Y=O, and  B=-(logr(y)+y log 6) .  
This shows that 6 and + are  jointly sufficient estimates 
of 8 and y. Thus,  no  other  estimates of 8 and y can 
give more information  on  these  parameters, and 1 and + 
are  optimum  statistics and  have,  indeed, a highly  desirable 
property.  Fisher [3] has  also  shown that 5 is a 100 percent 
efficient estimate of the population  mean. This is im- 
portant in  many  applications of the gamma  distribution. 

a12=B=u21* 
1 

We  now may write the  matrix 

(34) 

The inverse of this  after  multiplying  each term  by l/n 88 

required by (27) is 

6. VARIANCE OF THE ESTIMATORS 
Fisher [3] has shown how to  obtain  the large  sample 

variance of M. L. estimates  in  general  and  has  demon- 
strated  that M. L. estimates  are  normally  distributed  in 
large samples. Using  matrix  methods we define 

(35) 

which is the variance-covariance  matrix. From this  it 
immediately follows that  the variances and covariance are 

where cfj is the  ijth element of a  matrix,  the 0’s are  the 
parameters, and E is the expected  value  operator. If 
further we  define the  matrix  equation 

(37) 

cov (j, i)= -8 n(r*’ (7) - 1) 

the  variance-covariance matrix is Since cov (&+) =rdv(j)v(?), we easily  find the correlation 
r between 4 and + to be 

c=[$f,]. 
(39) 

Since e takes  on  two  values and 7, we may  write  the 
second partial  derivatives as LI1, Lz2, and L12 where the 
subscripts refer to  the  parameters. Differentiating  equa- 
tion (24) partially  with  respect  to /3 and y we find 

This is  negative as  it is seen it must be by equation (14), 
for if the mean is fixed, and 9 must vary inversely. The 
large  sample  variances were also given by  Masuyama and 
Kuroiwa. 

Lll=”- Y 22 
B2 b3’ 7. EFFICIENCY OF THE METHOD OF MOMENTS 

Although the method of moments  is widely used in 
fitting  frequency  distributions in climatology, it is the 
exceptional case when this  method  proves  to  be fully 
efficient in  estimating  climatological  parameters. The 
most  prominent  exception  is, of course, the normal dis- 
tribution where the moment  estimates  are  jointly sufficient 
and so are identical  with the M. L. estimates. As we 
have  seen the M. L. method of estimation  is always 
superior to moments when they give different  results. 

It is of interest  then  to  compute  the efficiency of the 
moment  estimates  for the gamma  distribution  to  evaluate 

where 9‘ is the trigamma  function. 

hence 
We have seen above in equation (3) that E (x)=&; 

“11=a2’ 

Y 
(31) 

Since (29) and (30) do not involve the  random variable 2, 
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the superiority of M. L. estimates. We have  seen that 
the efficiency of a  moment  estimate is the  ratio of the 
variance of the M. L. estimate  to  that of the moment 
estimate. The M. L. variances  are given by  equations 
(36) and (37) and  the variances of the moment  estimates 
may be worked out  as follows: 

pm=s2/E (40) 

ym=z2p. (41) 

The  problem now is to find the variance of these  two 
estimates. This  may be done using Taylor’s  formula. 
Taking the  total differential of (40) with  respect to Z 
and s2 gives 

in which the coefficients of the  delta increments  are the 
partial  derivatives and  the increments of higher  order are 
ignored. Squaring  and  taking  expected  values we find 

Since the expected  value of the  square of an  error is the 
variance, and  the expected  value of an  error  product is 
the covariance, we have 

(44) 

Now the variances ofs2, 5, and cov (Z,s2) are known in large 
samples to be [9] 

v(s2) = ( C L ~ - - C L ~ ) / ~  (45) 

45) = p2/n (46) 

cov (5, s2)=(n-1) p3/n2. (47) 

Substituting  values of the moments of the gamma  dis- 
tribution given by  equations (3),  (4))  (5)) and (6) for the 
moments in (45))  (46), and (47) and  then  for  the  sample 
moments, variances, and covariance  in (44) we find after 
some simplification 

which for large n becomes 

(49) 

Performing similar  operations on equation (41) we find 
for large samples 

v(rm)=; (T+U. 27 
(50) 

If we assume /3=1, a common value  for climatological 
data, we find for y = l  

v (p,) = 5/n; v(rm) = 4/n. (51) 

and for y= 10, 

v(pm)=2.3/n; v (yrn)=220/n. (52) 

Using the  Davis tables [5] we find the M. L. variances 
from (36) and (37) for y = l  

v(&=2.55/n; v (9)=1.55/n  (53) 

and  for y= 10, 

v(b) =2.04/n; ZI (q)  = 193.61~~. (54) 

According to  our  definition of efficiency we must  take  the 
ratio of the variance of the M. L. estimate  to  the moment 
estimate.  This gives from  equation (51) and (53) for 
Y= 1, 

Eff (p,) = 5  1 percent 

Eff (7,) = 39 percent 

Eff (Dm) = 89 percent 

Eff (7,) = 88 percent 

We see that for y < 10 the  method of moments produces 
unacceptable  estimates  for both j3 and y. For y near 1 
the  moment  estimates use only 50 percent of the informa- 
tion in  the sample  for  estimating /3 and  only 40 percent 
for y. Thus, for /3 the M. L. estimator would  do as well 
with half the  length of record  as the moment  estimate 
and for y with  two-fifths the record  length. Hence, use 
of the moment  estimates  in effect results in discarding 
half the record  in  estimating /3 and three-fifths of the record 
in  estimating y. For y=10 the efficiencies of 8, and yrn 
both approach  satisfactory  values. In  view of the d a -  
culty  in  obtaining homogeneous climatological data series, 
it seems at least  a  questionable  procedure to employ in- 
efficient estimators which do not  make  the best use of the 
available  climatological  samples. 

and for y=10 
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